Emerging Trends in Wafer Singulation

Mechanical Blade Dicing is the traditional method for wafer singulation. Mechanical blade sawing requires the frequent purchase of replacement blades, so the cost of consumables must be factored into the economic decision. For hard materials applications, such as sapphire wafers for High-Brightness LEDs, blade wear can be expensive, so laser scribing/dicing can be more cost effective. Laser systems can, inherently, produce smaller cut widths, or kerfs, than mechanical blades. This may enable wafers with smaller street widths resulting in more die per wafer. The trend toward thinner wafers and ultra low-k dielectrics is driving companies to consider alternatives to the traditional mechanical blade approach.

The report reviews traditional wafer singulation methods such as mechanical blade dicing, diamond tool scribe-and-break, and laser scribe-and-break. It compares these methods to emerging trends in wafer singulation including laser full-cut dicing and plasma dicing. Full text analysis provides critical details of the new developments and applications. Technology needs for laser dicing in target markets such as through silicon wafers (TSV), wafers with low-k or ultra low-k materials, and thin wafers used in memory products are described. Also described are memory applications with thin die including solid state drives, microSD cards, and stacked die CSPs.

1 Dicing Technologies
1.1 Mechanical Blade Dicing
1.2 Mechanical Scribe-and-Break
1.3 Dicing Before Grinding
1.4 Laser Scribe-and-Break
1.5 Stealth Dicing
1.6 Laser Full-Cut Dicing
1.7 Plasma Dicing

2 Target Markets for Laser Dicing
2.1 Low-k Wafers
2.2 Thin Wafers
2.2.1 Flash for MicroSD Cards
2.2.1.1 Micron Technology, Inc.
2.2.1.2 SanDisk Corporation
2.2.1.3 Toshiba Corporation
2.2.1.4 Samsung Electronics Co., Ltd.
2.2.1.5 STATS ChipPAC, Ltd.
2.2.2 SSDs
2.2.2.1 Toshiba Corporation
2.2.2.2 Renesas Eastern Japan
2.2.3 USB Flash Drives
2.2.4 Stacked Die Packages
2.2.4.1 Amkor Technology, Inc.
2.2.4.2 Fujitsu Integrated Microelectronics
2.2.4.3 Numonyx, Inc.
2.2.4.4 Renesas Technology Corporation
2.2.4.5 Samsung Electronics Co., Ltd.
2.2.4.6 STATS ChipPAC, Ltd.
2.2.4.7 Toshiba Corporation
2.2.4.8 DRAM
2.2.4.9 Micron Technology, Inc.
2.2.4.10 RFID
2.2.4.11 High Brightness LEDs
2.2.4.12 Wafers with TSVs

3 Key Equipment Suppliers
3.1 Dicing Equipment Suppliers
3.1.1 Accretech
3.1.2 Advanced Dicing Technologies Ltd.
3.1.3 Advanced Laser Separation Int.
3.1.4 Disco Corporation
3.1.5 Dynatex International
3.1.6 DynTest Technologies GmbH
3.1.7 Electro Scientific Industries, Inc.
3.1.8 EO Technics Co., Ltd.
3.1.9 JENOPTIK Automatisierungstechnik
3.1.10 J.P. Sercel Associates
3.1.11 Laserfacturing, Inc.
3.1.12 Opto-Systems Co., Ltd.
3.1.13 Panasonic Factory Solutions Co., Ltd.
3.1.14 Shibuya Kogyo Co., Ltd.
3.1.15 Singulase Oy
3.1.16 Synova S.A.
3.2 Suppliers of Laser Engines
3.2.1 Coherent, Inc.
3.2.2 DPSS Lasers, Inc.
3.2.3 Hamamatsu Photonics K. K.
3.2.4 Newport Corporation

Appendix I: Singulation Equipment Suppliers
Appendix II: Singulation Laser Suppliers

List of Figures
1.2. Dicing before grinding process.
1.3. Die strength improvement.
1.4. Sapphire processing using stealth dicing.
1.5. The electromagnetic spectrum.
1.6. Plasma dicing process.
2.1. Teardown of SanDisk's 16GB microSD card.
2.2. Wafer for RFID.
2.3. Die TEMs showing wafer cracking from laser dicing.
3.1. Multi-beam laser with minimal HAZ.
3.2. SEM image of silicon wafer on DAF.
3.3. Laser scribe and dicing.

List of Tables
2.1. Low-k Wafer Forecast
2.2. Wafer Forecast for Flash Memory in MicroSD Cards
2.3. STATS ChipPAC's Die for MicroSD
2.4. Wafer Forecast for Flash Memory in SSDs
2.5. Wafer Forecast for Flash Memory in USB Drives
2.6. Examples of Stacked Die Packages
2.7. Wafer Forecast for Flash and DRAM in Stacked Die
2.8. Comparison of Wafer Dicing Methods
2.9. Evaluation of Dicing Methods, 10\(\mu\)m Wafers
2.10. Evaluation of Dicing Methods, 30\(\mu\)m Wafers
3.1. Dicing Systems
3.2. PSX800 Specifications

Fax to 512-372-8889 or Email to tsi@techsearchinc.com

Name: ____________________________
Position: __________________________
Company: _________________________
Ship to Address: __________________
Bill to Address: ____________________

Purchase Order Number: ____________________________
AMEX, Visa, MC, JCB: ____________________________
Exp. Date: ____________________________

Report Price: $1,995.00
Additional Copies ($300 each): $______________
Total Amount: $______________