New packaging solutions are being adopted to achieve the economic advantages previously met with silicon scaling. The role of heterogeneous integration, especially chiplets, is pivotal in this new era. A chiplet is a functional circuit block and includes physically realized and tested reusable IP blocks with a standard or proprietary communication interface between the blocks. This report describes the drivers for growth in each segment and package types for different applications. The market for heterogeneous integration is projected to grow 10% in number of packages from 2020 to 2025, reaching almost 54 billion packages. Smartphones, wearables, and consumer packages account for the largest number. The market for packages using chiplets is expected to show a CAGR of 104% from 2020 to 2025. A set of 122 PowerPoint slides is included with the detailed analysis.

Executive Summary
1 Introduction
 1.1 What is Heterogeneous Integration?
 1.2 What is System-in-Package?
 1.3 What is a Chiplet?
2 Heterogeneous Integration
 2.1 AI Accelerators
 Alibaba, Baidu, Intel, Google, NVIDIA, Xilinx
 2.2 Network Switches
 2.3 Integrated Photonics
 2.4 GPUs and CPUs
 2.5 Drivers for Package Selection
 2.6 Silicon Interposers
 Samsung, TSMC
 2.7 Embedded Bridge and FO Solutions
 Amkor, ASE, IBM Research and AI
 Hardware, Intel, SPI, TSMC, Tongfu Microelectronics
 2.8 RDL Interposers
 Samsung, TSMC
 2.9 Laminate Substrate SiPs
 IBM Assembly and Test Services, JCET, Intel
 2.10 3D Heterogeneous Integration
 2.10.1 High Bandwidth Memory
 2.10.2 GLOBALFOUNDRIES
 2.10.3 Samsung
 X-Cube, SAINT-S
 2.10.4 TSMC
 2.10.4.1 LT-SolC
3 Chiplet Drivers and Applications
 3.1 Package Configurations
 3.1.1 2D
 3.1.2 3D
 3.2 Mobile: Smartphones, Tablets, Laptop
 3.2.1 Intel’s Foveros
 3.3 High Performance Computing
 3.3.1 AMD
 3.3.2 Ayar Labs, Cisco, and Photonics
 3.3.3 Intel
 3.3.4 Mediatek
 3.3.5 Samsung
 3.3.6 TSMC
 3.3.6.1 SoIC
 3.3.6.2 Immersion in Memory Computing
 3.3.6.3 InFO-SoI5
 3.4 Military and Aerospace
 3.4.1 DARPA
 3.4.2 SHIP
 3.5 Research Organizations
 3.5.1 CEA Leti
 3.5.2 IME
 3.5.3 Fraunhofer IZM
 3.5.4 IMEC
 3.5.5 L3 MATRIX
 3.5.6 UCLA
4 SiP Drivers and Applications
 4.1 RF Front-End and Connectivity Modules
 4.1.1 Mobile RF FEMs
 4.1.2 IoT Wireless Modules
 4.2 MEMS-Based Sensor Modules
 4.2.1 E-Compass Sensor Modules
 4.2.2 Motion Sensor Modules
 4.2.3 Pressure Sensor Modules
 4.2.4 MEMS Microphones
 4.2.5 Proximity and Ranging Sensor Modules

Quantifying the Impact of Heterogeneous Integration: Chiplets and SiP
4.3 Power Modules
 4.3.1 Analog Devices
 4.3.2 STMicroelectronics
 4.3.3 Texas Instruments
 4.3.4 Apple and USI Partnership
 4.3.5 Shift from Silicon to WBG Transistors
 4.3.6 Copper Clip
 4.3.7 Embedded Die Packages
 4.3.8 IPM Devices
4.4 BGA SSDs
4.5 Automotive Heterogeneous Integration
 4.5.1 Microcontroller/Processor SiP
 4.5.2 Airbag Sensors
 4.5.3 Tire Monitoring Sensors
 4.5.4 V2X Communications Module Examples
4.6 Medical Electronics
 4.6.1 Pacemakers and Defibrillators
 4.6.2 Neurostimulation
 4.6.3 Imaging
 4.6.4 Hearing Devices
 4.6.5 Fitness bands
 4.6.6 Stretchable and Printable Medical Electronics
5 Design
 5.1 Chiplet Design
 5.1.1 Chiplet Interfaces
 5.1.1.1 AMD
 5.1.1.2 Intel
 5.1.1.3 Open Compute Project
 5.1.1.4 Open Internetworking Forum
 5.1.1.5 Samsung
 5.1.1.6 TSMC
 5.1.1.7 Xilinx
 5.1.2 Chiplet Thermal Analysis
5.3 3D Design Challenges
6 Assembly and Materials
 6.1 Singulation
 6.2 Die Handling
 6.3 Hybrid Direct Bonding
 6.3.1 CEA Leti
 6.3.2 Fraunhofer Institute
 6.3.3 IMEC
 6.3.4 Xperi Corporation
 6.3.5 Equipment
 6.3.5.1 BESI
 6.3.5.2 EVG Group
 6.3.5.3 EVG Group and ASM Pacific Technology
 6.3.5.4 SET
 6.4 Thermal Materials
 6.5 Substrates
6.5.1 Capacity Shortages
6.5.2 Substrate Materials
7 Test and Inspection
 7.1 Test
 7.1.1 HBM
 7.1.2 Probing Chiplets
 7.1.3 Reliability Assessments
 7.2 Inspection
8 Infrastructure Investment
 8.1 Chiplet Assembly Infrastructure
9 Market Forecasts
 List of Figures
 2.1. Intel co-packaged optics Ethernet switch.
 2.2. Samsung’s I-Cube™.
 2.3. CoWoS for heterogeneous integration.
 2.4. Samsung’s R-Cube.
 2.5. Samsung’s H-Cube.
 2.6. SiP for 5G base station.
 2.7. SoIC for low temperature memory + SOC.
 3.1. Intel’s Foveros.
 3.2. AMD chiplets design for processor.
 3.3. Intel GPU with chiplets.
 3.4. Chiplet package advantages.
 3.5. F2F vs. F2B vs. side-by-side.
 3.7. Fine pitch bumping for chiplet integration.
 4.1. Block diagram - Nordic’s nRF9160 SiP for cellular IoT.
 4.2. ON’s RSL10 Bluetooth LE SiP with built-in antenna.
 4.3. Structure of proposed “hybrid” package for IMUs.
 4.4. Cross-section of ST’s LPS33HW water-resistant sensor.
 4.5. Schematic drawing of Infineon’s DPS368 package.
 4.6. Vesper’s piezo MEMS microphone sensing element.
 4.7. LTM4620 dual DC/DC μModule® regulator.
 4.8. STGAP1AS galvanically isolated gate driver SiP.
 4.9. TI molded power module form factors.
 4.10. Automotive infotainment SiP.
 6.1. IMEC hybrid bonding concept.
 6.2. Collective D2W process flow.
 7.1. Determine probe pad locations for SoIC.
 List of Tables
 1. Chiplet Package Market Forecast (millions of packages)
 2. Heterogeneous Integration (millions of packages)
 2.1. Heterogeneous Integration Examples
 2.2. IBM’s Embedded Bridge
 2.3. 5G Infrastructure Examples
 2.4. BW Density and Power: HBM vs. LT-SoIC (8-high)
 3.1. InFO-R versus InFO-L
 3.2. SoIC Compared to 2.5D and Conventional 3D IC
 3.3. SoIC Bonding vs. Nominal 3DIC with Microbump Stack
3.4. Comparison of Lite-IO and Prior Works
3.5. Advanced Microelectronics Assembly Specifications
3.6. RF Centric Specifications
4.1. Examples of RF Front-End Modules for Mobile
4.2. Avago AFEM-8200 Compared to AFEM-8100
4.3. Qorvo QM78092 Compared to QM78062
4.4. Area Required for RFFE Modules on iPhone Boards
4.5. Components in USI Wi-Fi/Bluetooth Modules
4.6. Examples of Wireless Connectivity Modules
4.7. Examples of Multi-Die Electronic Compass Sensors
4.8. Suppliers of Multi-Die E-Compass Chips
4.9. Types of MEMS Motion Sensors
4.10. Examples of Recent MEMS Motion Sensors
4.11. Suppliers of Board-Mount MEMS Motion Sensors
4.12. Examples of Pressure Sensors
4.13. Suppliers of Pressure Sensors
4.14. Suppliers for MEMS Microphones
4.15. Examples of MEMS Microphones
4.16. Examples of Optical Proximity Sensors
4.17. Examples of ToF Sensors for Ranging
4.18. Suppliers of Optical Proximity & ToF Ranging Sensors
4.19. Examples of Power Modules
4.20. Comparison of SESUB and a-EASI Technologies
4.21. Suppliers of BGA SSDs
4.22. Kioxia BG4 BGA SSD Specifications Compared to BG3
4.23. LiDAR Detector Roadmap
4.24. Examples of Automotive-Related SiPs
4.25. Renesas R-Car Cockpit SiPs
4.26. ISELED Alliance Members
6.1. Die to Die vs. Wafer to Wafer
8.1. Heterogeneous Integration Assembly Providers
9.1. Chiplet Package Market Forecast
9.2. Heterogeneous Integration
9.3. SiP Descriptions (Mobile, Wearable, Consumer)
9.4. Heterogeneous Integration Descriptions

Fax to 512-372-8889 or Email to tsi@techsearchinc.com