Automotive electronics packaging is entering a new frontier. An emerging trend in automotive electronics is Advanced Driver Assist Systems (ADAS). New safety features require the use of cameras, LIDAR, radar, communication systems, and fast processing capability. Initially considered a luxury item, many safety features are becoming standard in every new vehicle, as people clamor for enhanced safety, speed and access to mass transportation solutions.

Advanced packaging formats are being adopted rapidly. This report answers critical questions: Which semiconductor packages are used for image sensors, radar, ultrasonic, and LIDAR? Where are fan-out wafer level packages and flip chip interconnects being adopted? How do package reliability requirements differ from other applications? What are future challenges for new package adoption?

The 110-page report with references and accompanying set of 94 PowerPoint slides also examines changes in interconnect technology such as the adoption of copper wire bonding and copper clip. Automotive offerings from OSATs and IC package substrate makers are described. Packaging trends in the powertrain for electric and hybrid vehicles are analyzed. Market projections for various packages in each segment are provided. Reliability requirements for packages in automotive electronics are described.
6 Powertrain
6.1 Electric Vehicle Powertrain Packaging
 6.1.1 Hybrid Electric Vehicles
 6.1.2 Electric Vehicles
 6.1.3 Automotive MOSFETs
6.2 Key Advanced Packaging Developments
 6.2.1 Wide Band Gap Devices
 6.2.2 Double-sided Cooling
 6.2.3 Embedded Die Power Packaging
 6.2.4 Mechatronic Integration
7 Reliability Requirements
 7.1 Standards Based Qualification
 7.2 Knowledge Based Qualification
 7.3 Design for Reliability Method
 7.4 Impact of ISO 26262 ASIL Analysis
8 ADAS Package Market Forecast
 8.1 Cameras
 8.2 Radar
 8.3 LIDAR
 8.4 Sensor Fusion and Infotainment
 8.5 EV Powertrain Packages

Partial List of Figures
2.1. OV9716 image sensor.
2.2. Panasonic organic CMOS image sensor structure.
2.3. Calterah Semiconductor mmWave radar in FO-WLPs.
2.4. Stacked LIDAR photo detector.
2.6. Driver assistance sensors on Tesla Model X.
2.7. Laser beam scanning bi-axial MEMS mirror platform.
4.1. Map of low dielectric constant RF materials.
4.2. FET package with Cu clip.
6.1. Powertrain components in hybrid electric vehicle.
6.3. HybridPACK™ Drive IGBT module.
6.4. HEV/EV inverter trends.

Partial List of Tables
1. CMOS Image Sensor Market Projection for ADAS
2. FO-WLP Market Projection for Radar Packages
3. Sensor Fusion Processor Market Projection
4. EV Package Market Projection Based on Chevy Bolt
5. Market Projection for MOSFETs in EVs
1.1. Automotive Revenue for Selected Companies
2.1. ADAS Features with Sensors
2.2. Sensors for ADAS
2.4. Key Specifications of Sony Image Sensor
2.5. Packages for mmWave Radar
2.7. Highly Automated Driving Conditions
2.8. Innoluce 1D MEMS Mirror Products
2.10. Selected ADAS Sensor Fusion Packages
2.11. NVIDIA’s DRIVE PX Products
4.2. Cu Wire Reliability Test Results
4.3. OSATs with Cu Wire Bond for Automotive
4.4. Cu Wire Bond for Automotive Controller Packages
4.5. Selected Substrate Suppliers for Automotive
4.6. OSATs with Automotive Assembly
6.2. Powertrain Device and Module Requirements
6.4. Powertrain Inverter and DC Converter Manufacturers
6.6. Electrical Properties of Si and WBG Materials
6.11. Roadmap for Power Modules and Motor Control
7.2. AEC-Q100 Qualification Tests
7.5. Automotive vs. Consumer Potential Differences
8.1. CMOS Image Sensor Market Projection for ADAS
8.2. FO-WLP Market Projection for Radar Packages
8.3. Sensor Fusion Processor Market Projection
8.4. EV Package Market Projection Based on Chevy Bolt
8.5. Market Projection for MOSFETs in EVs