Cost and reliability are key issues in expanding the market for high brightness LEDs (HB LEDs). Packaging materials affect the optical efficiency of an LED package significantly. Reflectivity, transmissivity, and index of refraction are all material properties that could affect the lumens output. Thermal issues account for as much as 50 percent of the failures in lighting. The stability of packaging materials (encapsulants and lenses) is also affected by exposure to elevated temperatures and to UV and other wavelength radiation.

There are no standard LED packages. The variety of materials selected, packaging methods, and ultimately reliability make cost-reduction a complex decision-making process. The report reviews HB LED assembly trends and issues, materials used today, and requirements for the future. Examples of various packages for high brightness LEDs are used to illustrate the diversity in package options. Critical issues, including thermal and optical, are addressed. TechSearch International’s report is 46 pages of text with full references plus 85 PowerPoint sides.
High Brightness LED
Assembly Trends, Materials and Issues

Government Mandates for LED Lighting
LED Factory in Waichi
China LED Factory
LED Demand by Application 2009-2015
Total LED Demand by Die Size 2009-2015
HB-LED Market Trends (by application)
LED Lighting Supply Chain
Taiwan EPI Industry
Taiwan LED Packaging Industry
LED Penetration Rate
Target for LED TV Shipments
Size Trends for Sapphire Wafers
Issues for LED Packaging and Assembly
High Brightness LED Module Structures
LED Packaging Examples
Osram Golden Dragon Plus
LED Leadframe Package
SemiLEDs
One Big Die
Three LEDs in One Package
Six LEDs in a Package
Japanese LED Lamp with 40 LEDs
Trend to COB
Interconnect Methods
LED Lamp Made in China
Two LEDs Die to Die Wire Bonding
Silver Paste Glue for Second Wire Bonding
LED Bonded with Silver Wire
Flip Chip Package Example
Stud Bump Bonding
Japanese LED Lamp with Stud Bump
LED Flip Chip with Silicone Resin
Current Encapsulation Materials
Power Conversion for White-Light Sources
Simplified Heat Transfer View

Thermal Issues
LED Thermal System
LED Lifetime with Junction Temperature
Material Selection Key in Thermal Dissipation
Cree XP-G on Metal Core Board
Substrate Solutions for HB/HP LEDs
MCS on Aluminum for Thermal Cooling
DuPont CoolLam™ Metal Core PCB for LED Packaging
CoreSEM’s Metal PCB (CoolRATE®)
CoreSEM Metal Core Board Performance Data
Test for HB LEDs
Comprehensive LED Testing Solution
Factors Impacting LED Reliability
LED Lamp from China
LED Singulation Methods for Sapphire
LED Lamp Purchased in China, Made In China
Wafer Level Packaging
Evolution and Focus of VisEra’s Business
VisEra’s Semiconductor Compatible Process
Patterned Structure on Silicon Wafers
Integration of Passive Components on Silicon
VisEra’s Conformal Light Patterns
Hong Kong S&T Wafer Level Process Flow
Wafer Level LED Arrays After Singulation
Wafer Level LED with Screen Printed Yellow Phosphor
Top View of Singulated LED and Illumination of Single LED
Wafer Level Fabricated Process from EVG
Requirements for LED Packaging Materials
Transmission of DELO Optical Materials @100μm Thickness
Applications: Lens Bonding
TOWA’s Wafer Level LED Mold
Advantages of TOWA Molding Process
Outline of TOWA’s LED Compression Molding Process
Problems with LED Packaging Materials
Packaging Material Needs
Packaging for HB LEDs

Fax to 512-372-8889 or Email to tsi@techsearchinc.com

Name: ____________________________ Email: ____________________________
Position: __________________________ Telephone: ________________________
Company: __________________________ Fax: ____________________________
Ship to Address: ____________________ Bill to Address: ____________________

Purchase Order Number:

AMEX, Visa, MC, JCB: ____________________________ Exp. Date: ______________

Report Price: $_________ ($2,950 single user or $6,525 corporate)
Additional Copies $_________ ($300 each)
Total Amount: $_________

Contents and specifications subject to change without notice. 8/29/11