This issue of the Advanced Packaging Update features special coverage of outsourced semiconductor assembly and test (OSAT) financials for the first half of 2019. A section on the use of chiplets is provided and new versions of embedded bridge technology are discussed. High bandwidth memory developments, including an analysis of supply and demand is provided. A market forecast for HBM is included. The report also examines Apple’s new iPhone 11 with a discussion of the increased use of underfill.

Table of Contents

1 Industry and Economic Trends
 1.1 Economic Trends
 1.2 Semiconductor Sector
2 OSAT Financial Analysis
 2.1 Definitions
 2.2 OSAT Market Overview
 2.2.1 Second Quarter 2019 Market Performance
 2.2.2 Test
 2.3 Metrics
 2.3.1 Gross Margin
 2.3.2 Research and Development
 2.3.3 Capital Investment
 2.4 Outlook
3 Apple’s iPhone 11
4 Chiplet Developments
 TSMC, AMD, Intel, DARPA, L3MATRIX, zGlue
5 High-Density Bridge Developments
 Intel, IBM Research, SPIL
6 High Bandwidth Memory
 6.1 HBM Applications
 Huawei, Intel’s Nervana™, NVIDIA, Xilinx
 6.2 Suppliers of HBM
 Samsung, SKHynix, Renesas, PowerTech Technology, Inc.
 6.3 HBM Supply and Demand
7 5G Developments
 7.1 Infrastructure Equipment Providers
 7.2 Rollout Issues
 7.3 Differences for 5G mmWave
 IBM Assembly and Test Services, Intel, JCET, Murata
 7.4 Filters
 7.5 PCB Demand
 7.6 PCB Materials
 7.7 Testing in a 5G Era

References

List of Figures
1.1 Monthly U.S. housing starts.
4.1 Intel’s Lakefield Hybrid CPU.
4.2 Chiplet process integrating the optical interconnect with ASIC switch.
4.3 zGlue integration platform.
7.1 SiP for 5G base station.
7.2 Intel’s 5G mmWave module.
7.3 5G Infrastructure AiP.

List of Tables
2.1 Revenues for Top 20 OSATs (US$ millions)
2.2 Quarterly Revenues for Top 20 OSATs
2.3 Test and Assembly Revenue for Top 10 OSATs
2.4 Gross Margins for Top 10 OSATs
2.5 R&D Investment for Top 10 OSATs
2.6 2019 YTD CAPEX for Top 10 OSATs
3.1 Apple A13 Bionic and DRAM PoP Metrics
4.1 SoIC Compared to 2.5D and Conventional 3D IC Options
6.1 HBM Features
6.2 Products Using HBM
6.3 HBM Market Projections
7.1 RF360 Hexaplexer Combines Three Filter Types
7.2 Comparison of PCB Material Factors by 5G Frequency Domain
7.3 Dielectric Constant and Loss Tangent for Selected Materials