2019 Flip Chip and WLP: Trends and Market Projections

Fan-in wafer level package (WLP) and fan-out WLP continue to show strong growth. This report provides examples of the many products using WLP, including the supplier, number of WLPs in each product, and dimensions. Demand for flip chip in applications ranging from large die for Al accelerators to small die for amplifiers and filters is covered. Cu pillar is increasingly used for many devices. Demand continues for both 300mm and 200mm bumping and market projections in units and wafers are provided. An analysis of bumping, WLP, and FO-WLP capacity is presented for each segment by geographic region, technology, and wafer size. Panel processing developments, applications, and production plans are presented. Flip chip equipment and assembly methods are discussed. A set of 90 PowerPoint slides is included with the detailed analysis.

Executive Summary

- 1 Technology Developments
- 1.1 Fan-in and Fan-out WLPs
- 1.1.1 Chip Package Interaction Issues
- 1.1.2 Singulation and Edge Protection
- 1.1.3 Solder Ball Material and Pitch Trends
- 1.2 FO-WLP Developments
- 1.2.1 Large Area Panel Development
- 1.2.2 Panel Process Challenges
- 1.2.2.1 Economic Issues
- 1.2.2.2 Technical Issues
- 1.2.3 PLP Consortia Activities
- 1.3 Flip Chip Bump Trends
- 1.3.1 Pb-free Bumps
- 1.3.2 Cu Pillar
- 1.3.3 Bump Pitch Trends
- 1.3.4 CPI Issues
- 1.4 Wafer Sizes
- 1.5 Flip Chip Bump and WLP Price Trends
- 1.6 Flip Chip Substrate Trends
- 1.6.1 High-Density Substrate Trends
- 1.6.1.1 Silicon Interposers
- 1.6.1.2 Fan Out on Substrate
- 1.6.1.3 Embedded Bridge
- 1.6.1.4 3D Configurations
- 1.6.1.5 Glass Substrates
- 1.6.1.6 Organic Interposers
- 1.6.2 FC-CSP Substrate Trends
- 1.6.3 Warpage Challenges
- 1.6.4 Leadframe and Molded Substrates
- 1.7 Underfill Material Trends

2 Flip Chip Market Projections

- 2.1 Wafer Bump Capacity
- 2.1.1 Flip Chip Bump Capacity
- 2.1.2 Electroless NiAu
- 2.1.3 Gold Bump Capacity

2.2 Flip Chip Demand

- 2.2.1 Flip Chip Bumping Market Projections
- 2.2.2 Cu Pillar Trends
- 2.2.3 Gold Bumping Market Projections
- 2.2.4 Flip Chip Application by Device Type
- 2.2.4.1 High-Performance Devices
- 2.2.4.2 PCs and Game Consoles
- 2.2.4.3 Cryptocurrency
- 2.2.4.4 Media Chips
- 2.2.4.5 Pre-amps for HDDs
- 2.2.4.6 Mobile Phones and Tablets
- 2.2.4.7 RF Front-end Modules
- 2.2.4.8 Consumer Products and Games
- 2.2.4.9 Flip Chip on Leadframe
- 2.2.4.10 Filters
- 2.2.4.11 Medical
- 2.2.4.12 Automotive Electronics
- 2.2.4.13 Military and Aerospace
- 2.2.4.14 Integrated Photonics
- 2.2.4.15 DRAM
- 2.2.4.16 RFID Tags
- 2.2.4.17 High Brightness LEDs

3 WLP Trends and Market Projections

- 3.1 Fan-in WLP Applications
- 3.1.1 Mobile Phones
- 3.1.2 Tablets and Laptop/Tablet Hybrids
- 3.1.3 Wearables
- 3.1.3.1 Smartwatches
- 3.1.3.2 Smart Earbuds
- 3.1.4 Smart Speakers
- 3.1.5 AR/VR Headsets
- 3.1.6 Drones
- 3.1.7 Automotive Electronics

4801 Spicewood Springs Road • Suite 150 Austin, Texas 78759 Tel: 512-372-8887 • Fax: 512-372-8889 tsi@techsearchinc.com • www.techsearchinc.com

2019 Flip Chip and WLP:

Trends and Market Projections

3.1.8 Power Devices Partial List of Tables 3.2 Fan-in WLP Market Forecast 1.2. FO-WLP Panel Activities 3.3 FO-WLP Drivers and Projections 1.4. Bump Pitch Trends 3.3.1 FO-WLP Versions and Suppliers 1.5. Examples of Laminate Substrates 3.3.2 FO-WLP Applications 2.1. Merchant and Captive Flip Chip Bump Capacity 3.3.3 FO-WLP on Substrate 2.2. Gold Bump Capacity Projections 3.3.4 Panel Level FO-WLP Applications 2.3. Demand for Flip Chip Bumping 3.3.5 FO-WLP Market Forecast 2.4. Flip Chip Die Size and Bump Pitch Examples 3.4 Fan-in WLP, FO-WLP, Panel Capacity 2.5. Demand for Gold Bumped ICs 3.4.1 FO Panel Demand and Capacity 2.6. Flip Chip Demand by Device Category 4 Wafer Bumping and WLP Service Providers 2.7. Large Die FC-BGA Test Vehicle 2.8. Flip Chip Examples in Smartphones 5 Flip Chip Assembly and Equipment 2.9. RF FEMs with Flip Chip 5.1 Flip Chip Bonders 3.1. WLPs in iPhone XS and XS Max Appendix A: Bumping and WLP Services 3.2. WLPs in ASUS ZenFone 5Z Mid-Range Phone Appendix B: Underfill Materials 3.3. WLPs in Nokia 8110 4G Feature Phone Appendix C: Assembly Service Suppliers 3.4. WLPs in Galaxy Tab S4 Appendix D: Placement & Bonding Equipment 3.5. WLPs in Surface Pro 6 Appendix E: Laminate Substrate Suppliers 3.8. WLPs in Fitbit Ionic Partial List of Figures 3.11. WLPs in Apple HomePod 1.1. Foveros technology with 3D face-to-face stacking. 3.12. WLPs in the HTC Vive Pro Headset 3.14. Fan-in Wafer Level Package Demand 2.2. Solder bump and copper pillar capacity. 3.15. Fan-out WLP Redistributed Wafer Process Types 2.3. Copper pillar 300mm wafer demand. 3.16. FO-WLP Applications, Customers, and Suppliers 2.4. TSMC's InFO PoP for A11. 3.17. Fan-out WLP Examples 2.6. Apple A12X in iPad Pro. 3.18. Radar Sensor Packages 3.3. JCET ECP for power device. 3.19. Fan-out WLP on Substrate 3.20. TSMC's InFO oS Trends 3.5. eSiFO for SiP with 40GHz chip. 3.21. FO-WLP Production Status 3.6. InFO in Apple watch. 3.22. FO-WLP Market Projections in Units 3.7. Bottom PoP in FOPLP with AP and PMIC. 3.23. FO-WLP Market Projections in Reconstituted Wafers 3.9. 5G RF package with FO panel process. 3.24. Fan-in WLP Capacity and Demand Projections 4.1. PMT's minimal tool line. 3.25. Annual Panel Demand Forecast 3.26. Estimated Annual Panel Capacity 4.1. Selected Merchant Wafer Bumping and WLP Offerings 4.2. Reconstituted Wafer and FO-WLP Suppliers Fax to 512-372-8889 or Email to tsi@techsearchinc.com Email: Name: Position: Telephone: Company: Fax: Ship to Address: Bill to Address:

Report Price: \$ ______ (\$5,100 single user or \$8,750 corporate)