An increasing number of companies are expanding their use of flip chip with solder bumps and copper pillars in package (FCIP). The use of flip chip for a variety of wireless products will contribute to continued growth in 2009. Demand for thinner, lighter-weight portable products continues to drive the use of wafer level packages (WLPs), especially in mobile phones. WLPs have been used for low pin count devices, but are now an option for larger die sizes with higher pin counts (≥100 I/O). This study details these developments, including the trends in fan-out WLPs, with descriptions and photos. Updated forecasts for the flip chip wafer bumping and WLP markets by product application, device type, FCIP/FCOB split, number of wafers, and number of die are provided. Projected demand and capacity (merchant and captive) by the number of wafers and bump type are also included. Geographic changes in the location of bumping supply are presented. Information on stud bump, micro bumping, and copper pillar is also provided. Trends in Pb-free, 300mm, and low-k dielectrics are included. Suppliers and contact information for bumping, wafer level packaging, mounting equipment, contract assembly services, laminate substrates, laser dicing equipment, and inspection systems are provided.

Executive Summary

1 Technology Developments
 1.1 New Bumping and WLP Technologies
 1.1.1 Fan-out WLP
 1.1.2 Copper Pillar
 1.1.3 Thermal Copper Pillar Bumps
 1.2 Pb-Free Bumping
 1.2.1 Micro Bump
 1.3 Issues with Low-k Dielectrics
 1.4 Electromigration Issues
 1.5 300mm Wafer Bumping
 1.6 Bumping Price Trends
 1.7 Bump Pitch Trends
 1.8 Flip Chip Substrate Trends
 1.9 Underfill Material Trends

2 Flip Chip Market Projections
 2.1 Wafer Bump Capacity
 2.1.1 Solder Bump Capacity
 2.1.2 Electroless NiAu
 2.1.3 Gold Bump Capacity
 2.2 Flip Chip Demand
 2.2.1 Solder Bumping Market Projections
 2.2.1.1 FCIP vs. FCOB for Soldering
 2.2.2 Gold Bumping Market Projections
 2.2.3 Gold Stud Bump
 2.3 Flip Chip Application by Device Type
 2.3.1 Computers and Communications
 2.3.2 Personal Computers
 2.3.3 Game CPUs and Graphics Processors

3 Wafer Level Package Projections
 3.1 Wafer Level Package Capacity
 3.2 Wafer Level Package Demand
 3.2.1 Demand by Device Type
 3.3 Wafer Level Packaging Applications
 3.3.1 Mobile Phones
 3.3.2 WLPs for Embedded Components
 3.3.3 Laptops and Digital Cameras
 3.3.4 Image Sensors
 3.3.5 Analog Devices
 3.3.6 DRAM Memory
 3.3.7 Integrated Passive Devices
3.3.8 Power MOSFETs
3.4 RF Applications

4 Wafer Bumping and WLP Service Providers
4.1 Bumping Options
4.2 Wafer Level Packaging Options
4.3 Wafer Bumping and WLP Service Providers

5 Flip Chip Assembly Equipment
5.1 Stud Bump Bonder Equipment
5.2 Flip Chip Placement Equipment
5.2.1 Bump Type and Pitch Drive Bonder Selection
5.3 Production Flip Chip Placement Equipment
5.3.1 Recent Bonding Equipment Developments

6 Contract Assembly Services
6.1 IC Package Assembly Services
6.2 Board-Level Assembly Services

Appendices - Vendors and Suppliers

Partial List of Tables
- Typical Values for Flip Chip (Solder) and WLP
- Demand for Solder Bumped and Copper Pillar ICs
- Solder Bump and Copper Pillar Supply and Demand
- Demand for Gold Bumped ICs
- Gold Bump Merchant and Captive Capacity Projections
- Wafer Level Package Demand
- WLP Capacity and Demand Projections
- Typical Values for Flip Chip (Solder) and WLP
- Bump and Ball Metallurgy for High-End Flip Chip
- Pb-Free Bumping at Selected Companies
- Representative CoC Technologies
- C4NP 200μm Bump Reliability Test Results
- Flip Chip Organic Substrate Features
- Solder Bump and Copper Pillar Capacity
- Electroless NiAu Capacity
- Gold Bump Merchant and Captive Capacity Projections

Partial List of Figures
- IBM’s z10 processor
- Flip chip CPU in NEC SX-9
- Intel’s Atom™ processor
- Sony CoC
- FC-BGA package for car navigation
- COF driver ICs in LCD TVs
- COG in MacBook Air display
- Seiko Epson’s resin bump
- Toshiba image sensor WLP with TSV
- Fujitsu power management LSI
- Vishay’s MOSFET
- CSR’s Bluetooth™ device
- Marvell wireless LAN
- Infineon’s CMOS RF switch
- S.E.T. Indium bump